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Abstract. The Feynman path integral representation of quantum theory is used in a non—parametric
Bayesian approach to determine quantum potentials from measurements on a canonical ensemble. This
representation allows to study explicitly the classical and semiclassical limits and provides a unified de-
scription in terms of functional integrals: the Feynman path integral for the statistical operator and its
derivative with respect to the potential, and the integration over the space of potentials for calculating the
predictive density. The latter is treated in maximum a posteriori approximation, and various approximation
schemes for the former are developed and discussed. A simple numerical example shows the applicability

of the method.

PACS. 02.50.Tt Inference methods — 31.15.Kb Path-integral methods — 05.30.-d Quantum statistical

mechanics

1 Introduction

The solution of the quantum many—body problem requires
both techniques for solving the Schrodinger equation and
knowledge of the underlying forces, often to be deduced
from observational data. In the field of nuclear physics,
forces are extracted from scattering data and ground state
properties of the two—nucleon system, since no practi-
cable basic theory of nuclear forces exists up to date.
Given a data-based phenomenological nucleon—nucleon
potential, one can, in principle, construct the related po-
tential between two colliding nuclei. However, this is a
formidable task which has been attacked only for a few
simple cases in an approximate way, and a direct calcu-
lation of the nucleus—nucleus potential from observational
data is highly desirable for practical applications like, e.g.,
in nuclear astrophysics. In solid state physics the basic
force is known to be the Coulomb force, however, for a
straight problem like the motion of a single electron un-
der the influence of a crystal surface, one would prefer
to deduce the respective potential directly from observa-
tional data rather than going through the full many—body
problem of electrons and nuclei of the crystal.

The reconstruction of such two—body forces or single—
particle potentials from experimental data constitutes a
typical inverse problem of quantum theory. Such prob-
lems are notoriously ill-posed in the sense of Hadamard [1]
and require additional a priori information to obtain a
unique, stable solution. Well-known examples are inverse
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scattering theory [2] and inverse spectral theory [3]. They
describe the kind of data which are necessary, in addition
to a given spectrum, to identify the potential uniquely. For
example, such data can be a second spectrum for different
boundary conditions, knowledge of the potential on a half—
interval or the phase shifts as a function of energy. How-
ever, neither a complete spectrum nor specific values of
the potential or phase shifts at all energies can be inferred
by a finite number of measurements. Hence any practi-
cal algorithm for extracting two—body forces or single—
particle potentials from experimental data must rely on
additional a priori assumptions like symmetries, smooth-
ness, or asymptotic behaviour. If the available data refer
to a system at finite temperature T # 0, one is led to the
inverse problem of quantum statistics. In such a case, non—
parametric Bayesian statistics [4] is especially well suited
to include both observational data and a priori informa-
tion in a flexible way.

In a series of papers [5], the Bayesian approach to
inverse quantum statistics has been applied to recon-
struct potentials (or two—body interactions) from particle—
position measurements on a canonical ensemble. A priori
information was imposed through approximate symme-
tries (translational, periodic) or smoothness of the po-
tential or by fixing the mean energy of the system. The
likelihood model of quantum statistics (defining the prob-
ability for finding the particle at some position z for a
system with potential V' at temperature T') was treated in
energy representation.

In the present paper we apply the Feynman path inte-
gral representation of quantum mechanics [6] to calculate
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matrix elements of the statistical operator p and related
quantities in coordinate space. This representation is of
interest in the context of inverse problems in Bayesian
statistics for two reasons: First, it allows to study the tran-
sition to the semiclassical and classical limits, relevant for
example to atomic force microscopy [7] so far treated on
the level of classical mechanics. However, scales may soon
be reached where the inclusion of quantum effects will be
mandatory. Second, one obtains a unified description of
Bayesian statistics in terms of functional integrals. These
are on one side the Feynman path integrals, needed in
the likelihood model, and on the other side the functional
integral over the space of potential functions V' when cal-
culating the predictive density as integral over the product
of likelihood and posterior for all possible potentials.

Our paper is organized as follows: An introduction to
Bayesian statistics is presented in Section 2, showing how
Bayes’ theorem about the decomposition of joint proba-
bilities can be used for the inverse problem of quantum
statistics. A general expression is given for the likelihood
of a quantum system with given potential V' for a canoni-
cal ensemble, and the prior density is chosen as Gaussian
process to implement a bias towards smoothness and/or
periodicity of the potential V. This potential can be cal-
culated from a non-linear differential equation which re-
sults from the maximum posterior approximation for the
predictive density. In Section 3 we develop exact expres-
sions, in terms of path integrals, for the likelihood and its
variation with respect to the potential. Two approxima-
tion schemes for solving the inverse problem of quantum
statistics in path integral representation are proposed.

In the first variant, the path integrals in the likelihood
are treated in stationary phase approximation (Sect. 4).
Variation of the resulting, approximate likelihood with re-
spect to the potential then defines the maximum posterior
approximation on the semiclassical level (“variation after
approximation”). Quantum fluctuations around the clas-
sical paths of Section 4 are determined in Section 5, and
the classical limit is studied.

In the second variant, we invert the order of the above
operations (“variation before approximation”): We start
from the exact stationarity equations of the maximum
posterior approximation, expressed by the path integrals
and their derivatives, which are then treated in stationary
phase approximation in Section 6, with details given in
the appendix.

A simple numerical example is added in Section 7 to
demonstrate that the path integral formalism can actually
be used for problems of inverse quantum statistics. Our
conclusion (Sect. 8) discusses in particular the relations
between the various approximation schemes developed in
this paper, and their numerical implications.

2 Bayesian approach to inverse quantum
statistics

The aim of this paper is to determine the dynamical laws
of quantum systems from measurements on a canonical

ensemble. The method used is non-parametric Bayesian
inference combined with the path integral representation
of quantum theory which allows to study the transition to
the classical limit. To be specific, we aim at reconstruct-
ing the potential V' of the system from measurements of
the position coordinate Z of the particle for a canonical
ensemble at temperature 1 /5.

The general Bayesian approach, tailored to the above
problem, is based on two probability densities:

1. a likelihood p (2|0, V') for the probability of outcome
x, given a device for measuring observable O and given
potential V| not directly observable, and

2. a prior density p (V') defined on the space V of possible
potentials V.

This prior gives the probability for V' before data have
been collected. Hence it has to comprise all a priori in-
formation available for the potential, like symmetries,
smoothness, or asymptotic behaviour. The need for a prior
model, complementing the likelihood model, is character-
istic for empirical learning problems which try to deduce
a general law from observational data.

These ingredients, likelihood and prior, are combined
in Bayes theorem to define the posterior of V' for given
data D through

p (x7|O7, V)p (V) '

p(VID) = » @20

(2.1)
Equation (2.1) is a direct consequence of the decompo-
sition of the joint probability p (A, B) for two events A,
B into conditional probabilities p (A|B) and p (B|A), re-

spectively. Observational data D are assumed to consist
of N pairs,

D ={(z;, O))|]1 <i < N}, (2.2)

where x7, O denote formal vectors with components z;,
O;. Such data are also called training data, hence the la-
bel 7. For independent data the likelihood factorizes as

p(zr|Or, V) = H p(2:]0;, V), (2.3)

where a chosen observable O; may be measured repeatedly
to give values z;, equal or different among each other.
The denominator in (2.1) can be viewed as normalization
factor and can be calculated from likelihood and prior by
integration over V/,
parlon) = [ DV prlon Vipw) . @24)

The V-integral in equation (2.4) stands for an integral over
parameters, if we choose a parametrized space V of poten-
tials, or for a functional integral over an infinite function
space.

To predict the results of future measurements on the
basis of a data set D, one calculates according to the rules
of probability theory the predictive density

p ([0, D) = / DV p(2[0, V)p(VID)  (25)
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which is the probability of finding value x when measur-
ing observable O under the condition that data D are
given. Here we have assumed that the probability of x
is completely determined by giving potential V' and ob-
servable O, and does not depend on training data D,
p(z|O, V, D) = p(z]|O, V), and that the probability for
potential V' given the training data D does not depend
on observable O selected in the future, p (V]0, D) =
p(V|D).

The integral (2.5) is high-dimensional in general and
difficult to calculate in practice. Two approximations are
common in Bayesian statistics: The first one is an evalua-
tion of the integral by Monte Carlo technique. The second
one, which we will pursue in this paper, is the so called
maximum a posteriori approximation. Assuming the pos-
terior to be sufficiently peaked around its maximum at
potential V*, the integral (2.5) is approximated by

p (2|0, D) ~ p(z|0, V*) (2.6)
where
V* = argmaxy, ¢ p (V|D)
= argmaxy, ¢y p (z7|Or, V)p (V) (2.7)

according to equation (2.1) with the denominator indepen-
dent of V. Maximizing the posterior p (V|D) with respect
to V' € V leads to solving the stationarity equations

dyp(VID) = 0 = by (p(zr|Or, V)p(V)) (2.8)

where dy denotes the functional derivative 6 /6 V. Equiv-
alent to (2.8) and technically often more convenient is the
condition for the log-posterior

Sy Inp(V|D) = 0 = éy In p(ar|O7, V) + dy In p(V)
(2.9)
which minimizes the energy F (V|D) = —In p (V|D) and
will be used in the following.
A convenient choice for prior p (V) is a Gaussian pro-
cess,

p(V) ~ exp {=2(V = WIKIV = V)| = o271

(2.10)
where

'] = (V= W|K|V = Vo)

— [deds’ (v(a) = 0 (@) K (@, 2) [0 (') = w0 ()]
(2.11)

assuming a local potential V (z, ') = v(z)d (z — ).
The mean Vj represents a reference potential or template
for V, and the real-symmetric, positive (semi-)definite co-
variance operator (v K)~! acts on the potential, measur-
ing the distance between V and Vj. The hyperparame-
ter v is used to balance the prior against the likelihood
term and is often treated in maximum a posteriori ap-
proximation or determined by cross—validation techniques.
A bias towards smooth solutions v (x) of the stationarity

equation (2.9) can be implemented by K = —d?/dx?
choosing vy (z) = 0. While a typical potential generated
by a Wiener process is only continuous, solutions v(x) of
the stationarity equation (2.9) are differentiable, unless
the functional derivative of the likelihood has a d-spike at
some location x. To enhance smoothness in the sense of
differentiability of solutions of equation (2.9) one may in-
clude higher powers of A, for example, through the choice
k
K=, (7;!)& (aSTA) [4,8]. If some approximate sym-
metry of v(x) is expected, like for a surface of a crys-
tal deviating from exact periodicity due to point defects,
one may implement a non-zero periodic reference potential
vp (x) in equation (2.11).

The likelihood for our problem follows from the axioms
of quantum theory: The probability to find value x when
measuring observable O for a quantum system in a state
described by a statistical operator p = p (V) is given by

p(x|0, V) = Tre{Fo () p(V)} (2.12)

where Po () = Xe¢|z, &) (x, £ projects on the space
spanned by the orthonormalized eigenstates |z, ) of op-
erator O with eigenvalue x, and the label ¢ distinguishes
degenerate eigenstates with respect to O. If the system
is not prepared in an eigenstate of observable O, a quan-
tum mechanical measurement will change the state of the
system, i.e., will change p. Hence to perform repeated
measurements under same p requires the restoration of
p before each measurement. For canonical ensembles at
given temperature,

_ _exp(=f H)
~ Trexp(—(BH)

with Hamiltonian H = T + V and temperature 1/ S,
this means to wait between two consecutive observations
until the system is thermalized again. Choosing the par-
ticle position operator & as observable O, the probability
for value z; is

(2.13)

a1 N 3 _ {wile™ M)
p(x;|&, v) =Z7 Tr{|x;) (z;|exp (=S H)}

(2.14)
with partition function

Z =Trexp(—fH) = /dx (x| exp (=B H)|z) (2.15)

where we have dropped the label £ to simplify nota-
tion. For N repeated measurements of & with results z;,
i = 1, ... N, one has under the above assumptions of in-
dependent measurements

p(zr|Or, V) = H p(z;]2, v) = H [(aci|e—ﬂH|aci) Z—l] )

i
(2.16)
Combining equations (2.10), (2.11) and (2.16) leads to the
posterior

p(VID) ~ g (H <xi|eﬁH|xz->> exp (~2T[0]) =

i

exp (—E (V|D)) (2.17)
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with energy functional
DN
(2.18)

functional I'[v] defined in equation (2.11). The corre-
sponding stationarity equations (2.9) in explicit form read

E(V|D) = )+ NlnZ + = F[]

(@ile=?M|z;) N sz §r
5v(;c) Y o
’Z wle Py T Zsv(@ 250 O
(2.19)
with
%(5?}2&) = /dx’K(x,x’) (v(z') —wo(z)) . (2.20)

To extract the unknown potential v(z) from the above
non—linear variational equations one may use the algo-
rithm

X 10 . .
o) = ) —pat 2 {lnp<v<’>> - Zlnpmu,vm)} ,

K3
(2.21)
to be iterated till convergence is obtained. Step length
1 > 0 can be optimized during iteration. One may choose
any suitable positive definite operator A. For example,
taking A =1 the algortihm is known as gradient descent,
for the prior (2.20) A = K is typically also a good choice.
In a series of papers [5], equations (2.19) have been
studied successfully in energy representation for a vari-
ety of choices for prior p (V). This requires solving the
Schrodinger equation H |¢o) = Eq |¢a), (Pal@s) = dag,
which allows to calculate the functional derivatives d,, E,,
and ¢, ¢, needed in equations (2.19). In the following sec-
tions we shall apply the path integral formulation of quan-
tum mechanics in order to study the semiclassical as well
as classical regimes.

3 Likelihood and posterior in path integral
representation

To begin with we will give exact path integral representa-
tions for the statistical operator, for the partition function,
and their derivatives with respect to the potential. These
quantities constitute likelihood (2.16), posterior (2.17),
and the stationarity equations (2.19) defining the maxi-
mum of the posterior.

The matrix elements appearing in the likelihood (2.16)
can be written as path integrals [6]

(wile P Hay) =

Q(35)=$i 1
D _Z

q(7) eXp{ h/

0

q(0)==;

They are related to those of the time development opera-
tor of quantum mechanics by Wick rotation in the complex
time plane. The corresponding variable transformation

t=—iT (3.2)
replaces real time t by imaginary time 7
dq / dt by

and velocity

dg _ _.da
dr 'dt’
inducing a change of sign in the kinetic energy term.
Representation (3.1) is understood as abbreviation of
an infinite dimensional integral when dividing the interval
[0, B 7] into equidistant segments of length e = Sh/ M,
coding the path ¢ (7) at discrete points 7, = ¢k by ¢x =
¢ (1) and taking the limit M — oo

O ) =, (27rh5> /( 11 d%)

M
X exp{%Z( Qki% 1 +v(qk)>}

(3.3)

(zile™

v

= Dq (1) exp {% S [q]} , (3.4)
q(0)=ux;
with
a(Bh) =z M—1 M
pute) = o [ (T ) (525"
9 (0) ==, Bt
and Euclidean action 3
Bh
St = [ ar [5 & + ()] (36)

0

where we have introduced ¢ = dg/dr for short. The
boundary values are fixed, qo = qur = x;. The partition
function Z as trace in coordinate space can be written
as path integral over all periodic functions ¢ (7) of fixed
period B h

Z =Tr(e PH) = /d:c (z]e P H|z)

q(Bh)=a

z/dx / Dq(T)eXp{—%S[q]}

a(0)==
1
Dq(r) exp y =+ Sldl ¢
q(0)=q(Bh)
and the likelihood (2.16) takes the form

(3.7)

IQ(ﬁﬁ) 17

(1) exp (—+S[q])
. _ q(0)=z; h
pleziOn, V) 1:[ Ja©=atom D‘I( Jexp (=7:51a])

(3.8)
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0 g Bh t

0 Bh t

Fig. 1. Equivalent paths g1 (7) and g2 (7) in the interval [0, % 8], explaining equation (3.12). In the figure 7 is denoted ¢.

In this representation the posterior density reads

p(VID) ~ / <H Dagi (7')> exp {—% Z Filai, U]}

i=1
(3.9)
with total action

F:ZFz’[Qia ZSQ’L?
' (3.10)

inserting equations (3.4), (3.6), and (3.7) into (2.17)

and (2.18). Note that to each data point x; is assigned

its own path integral.
According to (3.7),

|+ Nhln Z v ]+@F[]

the functional derivative of Z

leads to
0 Z 1 1
=_= D _Z
q(0)=q(Bh)
Bh

Dqﬁ)wp{—%swﬁ
0 q=q(sn
xd(q(r') — '), (3.11)

interchanging the order of integration in the second step.
To evaluate the above path integral we observe that action
S [q] and measure Dgq (7) are invariant under cyclic shift
of each path ¢ (7) around some arbitrary value 7/. This
is displayed in Figure 1 where the two paths ¢ (1), ¢2 (7)
cover the same set of values in the interval [0, § /] and
thus generate the same value for the integral [ dr v (¢ (7)).
The same reasoning holds for the derivatives ¢1, g2, hence
[ dr (¢(7))? also has the same value for the two paths.
Therefore the path integral in (3.11), running over all pe-
riodic paths which go through point x’ at time 7/, can be
expressed as the path integral over all paths which start
and end at z’:

Da(r) exp {3 810} a(r) - )
q(0)=q(Bh)
q(Bh)=2a’
Dq (1) exp {%S[Q]}
q(0)=a’

= (/e PH ') | (3.12)

using equation (3.1). Note that (3.12) holds independent
of the choice of 7/. The remaining integral in (3.11) is then

Bh
trivial, [ dr’ = (A, confirming the expected result
0

67 _ ) v lrleBH| — —g (s le—PH|y
5 (@) 5v(x’)/d<| @) = =B ('|e™ "2’ .

(3.13)

In the functional derivative of matrix elements
(z;]le P H|z;) with respect to v,

Jo—BH|,..
(S’U(.ﬁ/) <1’Z|e |m1>
1 Bh Q(ﬁh)_xz 1
—; [ [ Dy ew {35t} s - @)
0 q(0)=u=z;
) Bh q(Bh)=m; )
= *ﬁ/d’]’l Dq (1) exp {ﬁS[q]}, (3.14)
0 q(0)==x;
q(T)—z

the 7/—integration is nontrivial (see Sect. 6).

With the exact expressions for the basic quantities at
hand, we will now study two variants of approximation
for solving the inverse problem of quantum statistics. In
variant 1 (Sects. 4 and 5) we use the stationary phase ap-
proximation for the matrix elements (3.1) of the statistical
operator, 65/d¢q; = 0, which leads to classical paths of a
(fictitious) particle in the (inverted) potential —v(q). We
develop an explicit, approximate form of the stationarity
equation (2.9) for the posterior (Sect. 4) which is discussed
by analogy to the ergodic theorem. Matrix elements of the
statistical operator as building blocks for the likelihood are
calculated in Section 5, taking into account quadratic fluc-
tuations around the classical paths. For large masses, the
classical limit is obtained. Starting point for variant 2 are
the exact stationarity equations (2.19) for the posterior in
path integral representation, then the following approxi-
mations are employed: Statistical operator and partition
function are treated in stationary phase approximation, as
discussed in Sections 4 and 5. For the respective deriva-
tives with respect to potential V| approximate expressions
are developed in Section 6. Variant 2 is more general than
variant 1 which turns out to be a special case of variant
2: We will show how to recover the stationarity equation
for the posterior of variant 1, and how to improve it.
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4 Maximizing the posterior in stationary
phase approximation

Following the reasoning in Section 2 for the v-integration
we shall treat the integrals (3.4) in stationary phase ap-
proximation, looking for paths ¢ (7) which minimize the
action S =", S [¢;,v] and account for the main contribu-
tion to the integrals. The corresponding stationarity equa-
tions,

is

d
— ;) f i =1,.., N (4.1
0= 5% mg; + dqiv(qz) or 1 s ey N (4.1)
with boundary conditions
2 (0) = ¢i (Bh) = (4.2)

are the classical equations of motion for a fictitious particle
of mass m in the inverted potential —v (¢) with boundary
conditions determined by the data points xz;. Their solu-
tions serve as starting points for a quantum mechanical
expansion.

For each path ¢; (1) the energy

I
Ei = -mqg —

5 (4.3)

v ()
is conserved. Equations (4.1), (4.2) have to be solved si-
multaneously with the corresponding approximation of
the stationarity equation (2.9), explicitly from (3.10),

2)
Bh 7[3H
/ 5(qi (r) — ) — BN (z]S——1a)
0

+vh / dr' K (z, 2') (v (2") — vo (2")) (4.4)
for the choice (2.10) of the prior p (V'). This approximation
scheme (variant 1) first approximates the path integral in
the likelihood and then develops the stationarity equations
for the posterior in this approximation (“variation after
approximation”).

The integral in the first term of (4.4) over
d-distributions can be evaluated, for simple zeroes of the
arguments, with the help of equation (4.3),

Jarswm —n=3 s
n; () 1
jgl \/% (Ei + v (qi(75,)))
- ni (7) , (4.5)
2 (Bi + v(2))

n; (z) being the number of times 7;, with ¢; (75,) = 2,0 <
7j;, < [ h. The path integrals for the statistical operator

and the partition function in the second term of (4.4) will
be discussed in detail in the following Section 5.

A compact and instructive form of condition (4.4) is
obtained by multiplying with some arbitrary observable
f(z) / N B h and integrating over x,

N Bh —BH
0= N—g/ ) - [ dof @) (el =)
gl / / ! !
+ N—ﬁ/dazdaz f(z)K(z, 2")[v(z") — vo (2]
1
bl [ @ @K b E) - @),
(4.6)

where f, denotes the mean of f with respect to (imagi-
nary) time 7 along path ¢; (7) and (f) the thermal expec-
tation value of observable f. Condition (4.6) reminds of
the ergodic theorem of statistical mechanics [9] concerning
time and ensemble average, there are, however, differences
in three respects:

1. the time average in (4.6) is over a finite interval only,

2. paths g; (1) refer to boundary conditions (4.2) rather
than to initial conditions for ¢ (1), ¢ (1), and

3. the prior gives a contribution to (4.6), non-zero in gen-
eral, in contrast to the ergodic theorem.

In the high temperature limit, 3 — 0, the prior term
dominates condition (4.6), as expected, since the first two
terms in (4.6) become [-independent. Prior knowledge
p (V) completely determines the maximum posterior so-
lution. In contrast, the prior on v becomes negligeable at
low temperature, corresponding to large B-values, and the
first two terms of (4.6) fulfill the ergodic theorem. In fact,
the potential

N
v (x) =—alln;oa26($ — x;)

i=1

(4.7)

is a solution of (4.4), if the prior can be neglected.
For the corresponding classical potential —v(q) =

+lim, o0 a Z 0 (¢ — x;) the equations of motion (4.1)
i=1
with boundary conditions (4.2) have unstable solutions

g (1) = =i, (4.8)
and the first term in (4.4) reads
N PR AR N
Z/dré qi ( :/dTZ(S
1=17 0 i=1
N
=Bh Z (4.9)
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For large (-values

N

Z (z]poi) (@oi|z)e PEo

1=1

(@le™?Mz)  — (4.10)

where the N-fold degenerate quantum ground state
(x|poi) is strongly localized by potential v (z), equa-
tion (4.7), around the data points x; such that

[(zlpoi)?  — 0z — @) (4.11)
N
in proper normalization. Hence, with Z = }_ e BEo —
i=1
Ne o the second term in (4.4),
1 1 &
7 (xle P H|z)  — N Z 0(x — x;) (4.12)

i=1

cancels the first one, equation (4.9).

So far we have restricted ourselves to position mea-
surements. If given data refer to other observables, one
can use closure relations to calculate the required matrix
elements in those observables while retaining the above
path integral formalism. A typical example would be par-
ticle momenta rather than positions. In this case, Fourier
transformation leads to

(e |5) = / dz dz’ (fla’) («/|e~* " |z) (z]5)
q(BR)=2a

~ /d:c dz’

Dq(7) exp { - % (S [q]

= /Dq(r) exp { — % (S[Q] + iﬁ(q(ﬁh)
(4.13)

where the integration is over all paths ¢ (7) of the interval
[0, BA]. Integral (4.13) may then be calculated in saddle
point approximation.

5 Quadratic fluctuations around stationary
paths and classical limit
To evaluate matrix element
q(Bh)==
et e) = [ Doy ew {-3 51} )
q(0)==x

we start from the stationarity equations (4.1), (4.2). They
read, dropping the label ¢ and using v' = dv/dg, for

simplicity of notation,

05 .. .

0= 5g = i + v (q) with ¢(0) = ¢(Bh) = = .
(5.2)

The stationary solutions g, (7) of (5.2) yield the main con-
tribution to the path integral (5.1); fluctuations around
these solutions g, (1) can be taken care of by a variable

transformation

with r(0) = r(Bh) = 0.

(5.3)
Assuming that only small deviations of ¢ (7) from g, (7)
are important for the integral (5.1), we approximate

q(1) = qu (1) + 7(7)

0(@) = v(@) + (@ - )0 (@) + = (@ — )0 (@)

2
(5.4)
and find for the action
Bh
_ m .o
S[Q]—/dT (2 o + U(Qz))
0
Bh
]_ 1"
+/dT <E7'"2 + = (qz)r2>, (5.5)
2 2
0
Bh

as the term [ dr (m Gz 7 + v (qz) 7“) vanishes by virtue
0
of (5.2), (5.3) and partial integration. Fluctuation r(7) is

thus governed by the curvature of the classical potential,
v"” (g, ), and the above boundary condition.

For the additive action (5.5) the matrix element (5.1)
of the statistical operator factorizes

1
ele e = Ao {1 STl|  G0)
with
Ay =
r(Bh)=0 . Bh
4 T 2 1 " 2
Dr(T)exp{ h/d7<2r +2v (qm)r)}
r(0)= 0
r(BR)=0 . Bh
= Dr (1) exp { ~ % drdr'r (1)
r(0)= 0
6% S [q]
r (T 5.7
54(m)34 () Dy 6D
and Hesse-matrix
6% S [q]
d0q(r)dq(r)| _

YR (_maa—; P 0) . 68)

in approximation (5.4).
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The remaining path integral (5.7) can be evaluated by
the van Vleck—formula [10]:

le ) = Ar exp {1 Slanl}

(222 e (Lt
(5.9)

For the partition function Z we use the result (5.9) for the
matrix element of the statistical operator

Z = /d:c’ Ay exp {%S[qz/]}.

Combining (5.6) and (5.10) results in the normalized ma-
trix element of the statistical operator

Agexp {—+ S g}
[da' Agrexp {—1 S[q]}’

with the factor A, comprising quantum fluctuations
around the classical path ¢, (7).

The 2'-integral in Z in equations (5.10), (5.11) can ei-
ther be done numerically or be treated in stationary phase
approximation. The action S [¢] depends on x through the
boundary values of ¢ (7), and its derivative with respect
to the upper (lower) boundary value of ¢ yields the corre-

(5.10)

(xle P2 ) Z = (5.11)

sponding momentum (i )P- The stationarity condition for
S thus poses the additional boundary condition

p(Bh) —p(0) =0.

Hence one has to find zg such that the solutions of the
classical equations of motion (4.1) fulfill boundary condi-
tions for both coordinate ¢ (7) and velocity ¢ (),

g(0) = q(Bh) = mo and §(0) = ¢(3h).

Then

(5.12)

(5.13)

Z = Az, exp {% S [ng]} (5.14)
in lowest order stationary phase approximation, with A,
the analogue of A,.

Two approximations for computing matrix ele-
ments (5.6) are of interest. First, for large masses m such
that v”/m is small, we may neglect the xz—dependence of
the fluctuation factor (5.7) which then drops out in the
normalized matrix element (5.11),

(z|e P H|z) _ exp(f%S[qz])
Z [ da’ exp (—3 S[qar])

(5.15)

in semiclassical approximation. Second, in the strict limit
m — oo the equations of motion (5.2) simplify,

1

o = —0' (gz) = 0 for m — o, (5.16)
m

and are solved by the static paths

Gz(7) =0
for the boundary conditions of (5.2). Then from (5.6)

@ (7) =z, (5.17)

<:c|e_ﬁH|:c> — A exp (—pv(x)) (5.18)

where A, is now strictly x—independent. The well-known
result of classical statistics,

(wle™"Ma) _ exp(=fu(x))
Z [ da’ exp (—Bv(z'))’

is thus reproduced.

(5.19)

6 Approximations for the derivative
of matrix elements of the statistical operator
with respect to the potential

After the discussion of the statistical operator and of the
partition function in Sections 4 and 5, we will now turn
to variant 2. While a simple, explicit expression for the
derivative of the partition function is already available
n (3.13), we still have to discuss the derivative of matrix
elements of the statistical operator, equation (3.14).
Three approaches of approximation for the derivative

Bh q(Bh)=x;

g / / Dar

q(0)==;

<exp {-3 51} b0 - ) (6)

0
dv(z!) {wile

are presented. The general strategy is to find approxima-
tions such that in the logarithmic derivative of the sta-
tistical operator, needed in (2.19), the statistical operator
drops out.

In the first approach, we observe that the main contri-
bution to the path integral stems from the stationary path
gz, (T), solution of equations (4.1), (4.2). Hence the distri-
bution 6 (¢ (7') — «’) under the path integral in (6.1) may
be replaced by 6§ (g, (') — &), referring to the stationary
path, in front of the path integral. In this approximation,

Bh
sl e =~ 4 [r8la ) - )
q(Bh)==a; )
< [pamew{-3su}. ©2

a(0) ==z
the first term in the stationarity equation (2.19) takes the
form
Bh

S
dv (z) <LL’Z|G |LL’Z ]./ , ,
= —— [ dr'd (¢ — 6.3
k#0009

(vile=PH
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in agreement with the first term in (4.4). Variant 1 is thus
shown to be a special case of variant 2, their difference
only affecting the first term of the respective stationarity
equations for the maximum posterior.

Our second approach improves (6.3) in a natural way.
Introducing the fluctuations around the classical paths ac-
cording to (5.3) to (5.5), the contribution of the classi-
cal action S[gy,;] can be factored out of the path integral
before approximation (6.2) is applied. This amounts to
modifying the argument of the d—distribution in (6.3) (see
Appendix),

sotey(wile™ Mlay)
(wile P H ;)
Bh
1 / / /
_/dT 5 (4 () + 70 (7) = 2') . (64)
h
0

The fluctuations r,, (7) are governed by the curvature of
potential v(gs, (7)), being solutions of
=0 (gu, (7)) 7, re, (0) = 0 = 1y, (BA) .
(6.5)
In our third approach, the d—distribution in its spec-
tral representation is kept under the path integral. Fol-
lowing the introduction of the fluctuations of our second
approach, one obtains after some lengthy but trivial ma-
nipulations (see appendix)

miy, for

Bh _ (ga; (1) —2)
—M(zx/) (wile™? Ha;) 1 /d ,eXp 2AR,, (17,7 )}
== T )
(wile P H|x;) h ) 2mh Ry, (T 7')
(6.6)

Here Ry, (7,7) is the Green function of the opera-
tor (— md2/cl72 + v"”(gy, (7)) with boundary conditions
R, (Bh, ") = R, (0,7) = 0. The sharp d—distribution
is thus replaced by a smooth Gaussian function, easier to
handle in numerical work. Apart from the stationary phase
approximation, the only approximation inherent in (6.6) is
the assumption (5.4) of small deviations from the classical
paths.

To summarize Section 6, the exact variational equa-
tions (2.19) can be treated in stationary phase approx-
imation of the relevant quantities (“variation before ap-
proximation”), matrix elements of statistical operator and
partition function and their derivatives with respect to the
potential being available.

7 Numerical case study

In this section we present numerical results for a sim-
ple, one-dimensional model, which merely serve to demon-
strate that the path integral technique can be used in
actual practice within the Bayesian approach to inverse
quantum statistics. Restricting ourselves to variant 1
(“variation after approximation”), we will discuss in turn
the classical equations of motion (4.1) with boundary con-
ditions (4.2) and the stationarity equations (4.4) of the

maximum posterior approximation, which eventually have
to be solved simultaneously.

We start with solving the equations of motion for a
given potential v. For a numerical implementation we dis-
cretize both the time 7, parametrizing some classical path
q (1), and the position coordinate x, upon which the po-
tential v (x) depends. The time interval [0, £ /] is divided
into n, equal steps of length

E:6/77'7'

choosing units such that i = 1. A path ¢ (7) is then coded
as vector ¢ with components g, = ¢ (%) for 7. = ek;
k = 0,1, .., n,;. The potential v (z) is studied on an
equidistant mesh of size n, in space, choosing n, = n..
To match the equidistant values of coordinate x to the
corresponding values of the classical path ¢ (1) we may
either round up or down the function values g or linearly
interpolate the potential between equidistant x-values.

In their discretized version, the classical equations of
motion of our fictitious particle in potential —v (¢) read

(7.1)

m
0=—-Z(m+1 — 2q + qx—1) + V' (a) ;
Ek=1,2,.n.—1, (72)
and are to be solved with boundary conditions
go = T = qn, - (7.3)

Equations (7.2) and (7.3) amount to solving the matrix
equation, for given v (g),

£ 0 .. 0
T 210 0 a0
q1
m 01 -210 .
- :
0 - 1 -2 1 n, —1
0 - 0 nr
x
v (q1)
+ :
V' (Gn, —1)
x
=AG+1t(@)=0 (7.4)
which is done by iteration according to
gu+y = g0 — g (q(j) n A—lg(cﬂj))) . (75)

Step length 7, in (7.5) can be adapted during iteration.
Having solved (7.4) for various boundary values x; numer-
ically, we can calculate the likelihood p (z;]0;, V'), equa-
tion (2.14), in semiclassical approximation (Eq. (5.15)).
In order to analyse the quality of the approximation this
likelihood can be compared with the classical (Eq. (5.19))
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Fig. 2. Comparison of classical, semiclassical and quantum mechanical likelihood for given potential. Upper left part: original
potential v (z). Upper right part: fictitious potential u (z) = —wv (z), to be used in (7.2); thin horizontal lines indicate range and
energy of paths ¢, (7). Lower left part: classical (dotted line), semiclassical (full line) and quantum mechanical (dashed line)
likelihoods, see equations (5.19), (5.15) and (7.6), respectively. Lower right part: paths g, (7) for various z-values. Parameters
used are m = 0.1, 3 = 6, n. = 30, n, = 30. (In the figure 7 is denoted ¢.)

and the exact quantum statistical result [5],
p@i|0:,V) =Y exp (—BEa)|¢a(x:)* /2,

Z =" exp(—BE.) (7.6)

with ¢, the eigenfunctions with energy FE, of the Hamil-
tonian H =T + V.
As example we consider a potential of the form

1

v(z) = 1 + exp (%(|x — 15|—4))

(7.7)

on an equidistant mesh with n, = n, = 30, shown in
Figure 2, upper left part. The right hand side of Figure 2
displays the potential —v (¢) together with the range and
energy of solutions g, (7) of (7.4) for various boundary val-
ues z (upper part), and the solutions ¢, (7) as functions
of 7. Note that solutions g, (7) refer to a boundary value
problem in the fictitious potential —v (¢) rather than to
the initial value problem of classical mechanics in poten-
tial +v (q). The probabilities p (x;|0;, V') in the lower left
part of Figure 2 exhibit the difference of the classical and
semiclassical approximations to the exact quantum sta-
tistical result. As expected on account of the uncertainty
relation, the variance of the probability distribution in-
creases when going from the classical limit to the exact
quantum mechanical calculation. The 3 curves coincide in
the classical result, if temperature or mass are increased.

Having finished the preparations of solving the equa-
tions of motion we now start searching for numerical solu-
tions of the maximum posterior approximation (4.4). To

evaluate the first term of stationarity equation (4.4) for
one-dimensional models, one should not use version (4.5):
on every one-dimensional, periodic path the velocity takes
the value zero for at least one value of 7. A zero of the
argument of the J-distribution at that value of 7 will not
be a simple one. We have, therefore, for the discretized
values 7, replaced the value ¢ (74) by the nearest integer
of the interval [0, ng], and the J-distribution in (4.4) by
the Kronecker symbol, hence

Nr
/ dri((r) — o) — 3 bga.  (18)
j=1
The matrix elements of the second term
(x| exp (=B H)|z)/Z are calculated semiclassically

according to (5.15). Note that this requires to solve the
equations of motion (5.2) for every . In the prior (2.10)

we use
F[U] = 72 (o Aij Uj (79)
4
with
1 -2 1
1 .
A= | , (7.10)
1-21
0 - 01 =2

thus demanding smoothness for the potential v (z) to be
determined. In our actual calculation we have sampled
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Fig. 3. Bayesian reconstruction of potentials using the path integral method in variant 1 (“variation after approximation”).
Left part: original potential (thin line) and reconstructed potential in semiclassical approximation (5.15) (thick line). Right part:
relative frequencies of sampled data (bars), likelihood of the true potential (thin line) and of the reconstructed potential (thick
line) in semiclassical approximation (5.15). For comparison, classical density (dotted line) and quantum mechanical density
(dashed line) according to (5.19) and (7.6) for the reconstructed potential are also shown. Parameters: § = 10, m = 1,y = 5,

N = 15.
N = 15 data from the discretized version (n; = 30) of
potential

1 2

- (cos (—ﬂ- (x — 15)) — 1) for = € [5,25]
o) = 4 4 10

0 elsewhere
(7.11)

for B = 10. To this end we first calculated the exact quan-
tum statistical probability distribution (7.6) for the true
potential (7.11) and then generated the data by standard
sampling techniques. Equation (4.4) is then solved, simul-
taneously with equations (7.4), (7.5), by iteration, using
the gradient descent algorithm according to (2.21). The
starting potential for the iteration was the inverted im-
age of the sampled data distribution. Motivation for this
choice was the expectation that a high frequency of sam-
pled data implies a deep potential. The hyperparameter
v is chosen such that the depth of the reconstructed po-
tential and of the true potential (7.11) are approximately
equal as shown on the left hand side of Figure 3. The
right hand side shows the empirical density of data to-
gether with the likelihood for the true potential (7.11)
and for the reconstructed potential in semiclassical ap-
proximation (5.15). In addition the classical and quantum
mechanical likelihoods, (5.19) and (7.6), for the above re-
constructed potential are presented in this figure. For suf-
ficiently heavy masses the gross shape of the potential
is recognized; classical, semiclassical and quantum me-
chanical likelihoods are approximately the same. With
decreasing mass, the differences of classical, semiclassical
and quantum mechanical likelihoods become more pro-
nounced, with the double-hump structure of the potential
still recognized (Fig. 4). To better reproduce the absolute
value of the potential minima one may decrease parame-
ter v at the expense of distorting the symmetrical shape
of the potential, like in Figure 3.

An improvement of the presented results could
be achieved, when the z—dependent quadratic correc-
tion (5.9) instead of (5.15) is considered. For a numerical
implication, the vector S[g,] has to be calculated for all
discretized values z. In a second step the second deriva-
tive of S[g,] with respect to x has to be evaluated by

applying the corresponding matrix, as given in (7.10), to
the vector S[g,]. As the difference between classical and
semiclassical approximations is well pronounced in Fig-
ure 2, we have refrained from carrying out the calculation
of the quadratic correction (5.9). Furthermore, consistency
of the treatment of the quadratic correction and of the
choice of the prior would demand to include higher orders
of A in the inverse covariance K, in order to obtain reli-
able results for the above second derivative of S[g,] or the
same derivative of v(g, (7)) along the classical path.

8 Conclusion

In this paper we have developed the inverse problem of
quantum statistics in path integral representation which
supplements the energy representation used in a number
of recent publications. The advantage of the path inte-
gral representation in this context turns out to be twofold:
First, one can study the semiclassical and classical limits
which are of interest for the analysis of experimental data
as obtained from atomic force microscopy. In this rapidly
developing field, the unknown force between atoms on the
surface of inorganic or organic materials is reconstructed
from experimental data on the level of plain classical me-
chanics [7]. Neither finite temperature nor quantum ef-
fects are taken into account although spatial resolution is
approaching atomic distances. Second, with the path in-
tegral representation for the likelihood and the functional
integration over possible potential fields, one obtains a
unified description for the basic equations of Bayesian in-
verse quantum statistics.

Various approximation schemes have been studied for
calculating, in this representation, the statistical operator
and its derivatives which are the essential quantities in
maximum posterior approximation.

Variant 1 applies first the stationary phase approxi-
mation to the path integral in the likelihood and then de-
rives, in this approximation, stationarity equations for the
posterior. They are to be solved simultaneously with the
equations of motion for the classical paths which consti-
tute the stationary phase approximation. Variant 2 starts
from the exact stationarity equations for the posterior,
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Fig. 4. Bayesian reconstruction of potentials, using the path integral method in variant 1, for small masses: Graphics as in
Figure 3, but with parameters: 8 = 10, m = 0.05, v = 10, N = 15.

given in terms of matrix elements of the statistical op-
erator and their derivatives with respect to the poten-
tial. These quantities are then inserted in stationary phase
approximation of the respective integrals. Without going
into any detail, it is obvious that variant 2 is superior to
variant 1 where the variation of the likelihood is carried
out in the restricted variational space spanned by the sta-
tionary phase approximation of the path integrals.

Common to both variants are the matrix elements of
the statistical operator which, in stationary phase approx-
imation, consist of two factors: one depends exponentially
on the action S calculated for the above classical paths;
the other takes care of quantum fluctuations around these
paths. The latter is given by van Vleck’s formula, requir-
ing the second derivative of the action S with respect to
the boundary values of the classical paths. In semiclassical
and classical approximation, these fluctuation factors may
be taken as independent of the boundary values, and then
reduce to mere normalization factors which cancel in the
likelihood.

The two variants differ in how they treat the deriva-
tive of the matrix elements of the statistical oprator with
respect to the potential. In variant 1, the derivative of the
approximate matrix elements with respect to the potential
at position x gives rise to d—function—type contributions
for all times for which the stationary path takes the value
x. This result is also obtained in variant 2a when, in the
exact derivative, the —function under the path integral is
approximated by a d—function referring to the stationary
path in front of the path integral. This approximation can
be improved by including the fluctuations around the clas-
sical paths in the argument of the d—function (variant 2b).
Fluctuations follow from harmonic oscillator equations of
motion with time dependent frequency, given by the cur-
vature of the potential along the stationary paths. Finally,
keeping the d—function in its spectral representation un-
der the path integral, an exact, explicit expression is found
for the derivative (variant 2c) as long as the fluctuations
are treated in harmonic approximation. As a result, the
6—functions of variant 2a, identical with variant 1, are re-
placed by Gaussians whose widths are given by the Green
function of the above oscillator with time dependent fre-
quency.

As to the computational complexities of variant 1 and
2a, respectively, one has to solve N equations of motion
for the classical paths in addition to the stationarity equa-
tions for the posterior. For the more advanced approaches,

variant 2b and 2c, the number of equations of motion to
be solved is doubled, adding to the above N equations for
the classical paths N more equations for the fluctuations
and the Green functions, respectively. While the compu-
tational demands for solving these equations are compa-
rable, version 2c is to be preferred being better founded
than 2b and easier to handle numerically with its smooth
Gaussians versus the sharp é—functions. A simple numeri-
cal example is presented to demonstrate the actual appli-
cability of this approach.

Appendix A

In this appendix details are given to derive formulae (6.4)
and (6.6) which improve approximation (6.3) of the log-
arithmic derivative of the statistical operator. As a first
possibility we apply approximation (6.2) to the deriva-
tive of the statistical operator after the classical action
S[gz;] has been factored out with the help of the variable
transformation (5.3) and the additive form of Sg|, equa-
tion (5.5). Then,

(wile P |z;) =

du (')
Br  r(Bh)=0
7eXP {—%S[Q:ci]}/d,r/ DT(T)
h
0 r(0)=0

X 80 () + () — ) exo {1 5101}

Bh
1
~ 187
_ 7eXP{ };:L [q 1]} dTI&(q:nl (7_/) + T, (7_/) o I’I)
0
r(Bh)=0

x /Dr(T)exp{—%S[r]} (A1)

r(0)=0

where r,, (7) is the solution of

1"

mr;cl = (qﬁl‘q, (T))Txi for Tz, (O) =0= Tz, (ﬁ h) s
(A.2)
and
8h
(A.3)

S| = /dT <%mr2 + % v (g, (T))r2> .
0
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With (5.6) and (5.7),

7_;7« ) exp {_%5[]}, (A4)
r(0)=0

one finally has

#fy)@%e_ﬁH

1 / /
ﬁ/dTé 0o, ( +7’x1()f:c). (A.5)
0

A second possibility to evaluate the derivative of the
statistical operator consists of inserting the spectral rep-
resentation of the d-distribution into (6.1). With ¢ (1) =
dz; (T) + 7 (7) one obtains, in approximation (5.4), for

O |y =

(zile™

—~|

dv (")

_ % exp {% S 4] }727']@ exp {i X (g, (7') — 2')}

r(Bh)= Bh
X / Dr exp{——/dr — 2 +—U/(qxi)7“2
r(0)=0

—iARS(T—7) 7“(7)) } (A.6)

a path integral where a d-type potential appears in the
action in addition to the harmonic potential with time
dependent frequency. Looking for saddle points of the path
integral leads to the inhomogeneous equation of motion

TN e n = iANRS(T — 7))
AT)

—m g, 2 (T) + 0" (ga
with boundary conditions
Te; v/ A\ (0) = Tz, 7'\ (6h) =0.

Note that the solutions of (A.7), (A.8) are both A- and
7/-dependent. They are intimately related to the Green

function R, (7, 7') of the operator —m d—22 + 0" (ga, (1))
with the above boundary conditions,

(A.8)

—mR,, (1, 7) + v (qz; (7)) Ry, (1, 7') = 6 (7 — 7')

(A.9)
with
R, (07 Tl) = R, (ﬂ h, TI) =0, (A]-O)
namely
TwirA(T) = i RA Ry, (1, 7') . (A.11)

Furthermore, multiplying (A.7) by 7, (7) and inte-
grating over 7, one obtains for the quadratic part of the
stationary action of (A.6)

8k
1 1 1 »
3 o (3ot 3o o)) -
0
A
= 5 Tera(T) =
)\2
T R, (7', 7). (A.12)

Here use has been made of a partial integration,
— [dr#? = [drr#, and of equations (A.7) and (A.8).
After further variable transformation,

T(T) = rﬂﬂi"'//\(’r) + Z(T) )

one finds that in the action of equation (A.6)

(A.13)

h
dr (m Fo v x (7)1 (7)

@

(=)

A (T)(T)

T_T)

= [t a (DI@E" =0 (A14)

+ U (q3,7 ( )) ’r17
— ihNI (T

so that (A.6) reads, under approximation (5.4),

du(a')
Bh
- % exp {%S[qxi]}/dﬂ V%exp{i/\(qm (')

0

+ 7o, ra (7)) z')}exp{%S[miru]}]

1(Bh)=
x / Dl(T)eXp{—% [11}, (A.15)

1(0)=0

with abbreviations S [ry, ] and S[I] defined according
o (A.3). Using (A.12), the integral over A is of Gaussian
type and can be carried out:

d)\ . / 1 / /
/ﬂ exp {z)\(q% (") + 57“;cir'>\(7') - x)}

dA

2
=[5, P {i)\ (@, (7)) — 2') — Ah !

— Ry, (7', T’)}

AEEILY

1
= ex
27 ARy, (T, ') P { 2hR,, (7', T)
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The final result for
<$i|e7ﬁH|xi> is

the logarithmic derivative of

- Bh (ge; (") —a)?
soey (wile P H i) — E/dw exp{ 2h Ra, (7, T/>}
(wile~P Hlz;) h J 27 h Ry, (7', 7)
(A.17)
inserting
(@ile P H|a;) =
L(BR)=0
1 1
exp {ﬁS[qx]} DI () exp {ﬁS[Z]}
1(0)=
(A.18)

according to (5.6) and (5.7). In comparison to the first
approach, the é-distributions in (6.3) and (6.4), equal
o (A.5), are replaced in (6.6), or (A.17), by Gaussians
which are normalized with respect to ' and whose widths
are given by the Green functions Ry, (7, 7). Note that, at
least for v’ (qy,) > 0,

Bh )
R, /dT <1 m(é)Rlb(: T ))

"

+ %v (qu, (7)) R2. (T, TI)> > 0. (A.19)

Equation (A.19) follows from (A.9) multiplied by
Ry, (1, 7') and integrated over 7. Our result (A.17)
does not rest on the assumption about shifting the
d—distribution in front of (6.2) and (A.1), respectively.
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